\begin{tabbing} $\forall$${\it es}$:ES, $x$, $i$:Id, $T$:Type. \\[0ex]($\forall$$x$, $y$:$T$. Dec($x$ = $y$ $\in$ $T$)) \\[0ex]$\Rightarrow$ @$i$($x$:$T$) \\[0ex]$\Rightarrow$ \=$\forall$${\it e'}$@$i$.\+ \\[0ex]($\forall$$e$$<$${\it e'}$. ($x$ when $e$) = ($x$ when ${\it e'}$) $\in$ $T$) \\[0ex]$\vee$ ($\exists$\=$e$:E\+ \\[0ex](($e$ $<$loc ${\it e'}$) \\[0ex]c$\wedge$ \=(($\neg$(($x$ when $e$) = ($x$ after $e$) $\in$ $T$))\+ \\[0ex]\& ($\forall$${\it e''}$:E. ($e$ $<$loc ${\it e''}$) $\Rightarrow$ ${\it e''}$ $\leq$loc ${\it e'}$ $\Rightarrow$ (($x$ when ${\it e''}$) = ($x$ when ${\it e'}$) $\in$ $T$))))) \-\-\- \end{tabbing}